Exercise 28

Prove the statement using the precise definition of a limit.

$$
\lim _{x \rightarrow 4^{+}} \frac{2}{\sqrt{x-4}}=\infty
$$

Solution

Proving this infinite limit is logically equivalent to proving that

$$
\text { if } 4<x<4+\delta \quad \text { then } \quad \frac{2}{\sqrt{x-4}}>M
$$

where M is any positive number. Start by working backwards, looking for a number δ that satisfies $4<x<4+\delta$, or $0<x-4<\delta$.

$$
\begin{gathered}
\frac{2}{\sqrt{x-4}}>M \\
2>M \sqrt{x-4} \\
\frac{2}{M}>\sqrt{x-4} \\
\left(\frac{2}{M}\right)^{2}>(\sqrt{x-4})^{2} \\
\frac{4}{M^{2}}>x-4
\end{gathered}
$$

Choose $\delta=\frac{4}{M^{2}}$. The hypothesis then becomes

$$
\begin{gathered}
4<x<4+\delta \\
0<x-4<\delta \\
x-4<\frac{4}{M^{2}} \\
M^{2}(x-4)<4 \\
M^{2}<\frac{4}{x-4} \\
\sqrt{M^{2}}<\sqrt{\frac{4}{x-4}} \\
M<\frac{2}{\sqrt{x-4}} .
\end{gathered}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 4^{+}} \frac{2}{\sqrt{x-4}}=\infty
$$

